
T AD-A142 224
UNCLASSIFIED

AN INFORMAL STUDY OF PROGRAM COMPREHENSION(U) ADVANCED 1/
INFORMATION AND DECISION SYSTEMS MOUNTAIN VIEW CA *
E A DOMESHEK ET AL. MAR 84 AI/DS-TM-1014-3
AFOSR-TR-84-0309 F49620-81-C-0067 F/G 12/1 NL

'•

1.0

I.I,

1.25

m
Li
Li IM

12.0

11111===
2,0

1.6

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1%3-A

A

-• •*•

->

••H

/

1
1

J
J

J
J
J

ÄEOSR-IK- 84-0 809

AI.D

CM
CM

<

Ö

AN INFORMAL STUDY OF PROGRAM COMPREHENSION

Kric A. Domeshek
Daniel G. Shapiro
Jeffrey S. Dean
Brian I'. McCnne

March 1984

Annual Technical Report for 1 June 1982 - 31 May 1983

Approved for public release; distribution unlimited

Prepared for

Directorate of Mathematical 6. Information Sciences
Air Force Office of Scientific Research

Boiling Air Force Base, D.C. 20332

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of AI&DS, AFOSR or the US Government.

DTIC
ELECTE
JUN 1 9 1984

ADVANCED INFORMATION » DECISION SYSTEMS ^T>V F*

Mountain Via*, CA 94040

Hit FILE COT 84 06 19 040

WKmmm»*** 4 rtmOä mm*

«
i f

I
1

SECURITY CLASSIFICATION OH THIS PAGE

1

REPORT DOCUMENTATION PAGE

i> REPORT SECUHITY CLASSIFICATION

UNCLASSIFIED
7r SECURITY CLASSIFICATION AUTHORITY

Jt>. OECLASSIFlCATION'OOWNGRAOING SCHEDULE

4 PERFORMING ORGANISATION REPOHT NUMtlERISI

TM-1014-3

0» NAME OF PERFORMING ORGANIZATION

Advanced Information &
Decision Systems

lib. OFF ICE SYMBOL
I If •J/>/iJi\'iiMr I

6c. AOORESS fCily. Stole anil /.!!• Codt)

201 San Antonio Circle, Suite 286
Mountain View, CA 94040

t». NAME OF FUNOING/SPONSORING

us^CT?rAt>sTdON

Air Force Office of Sc Seien til MftearcTT 8c AOORESS iCily. Stale and Stl' Aß?^31"011

Building 410
Boiling AFB, D.C. 20332

i£.

111» OFF ICE 'JVMIIOL
(7/ (*/'/'/« .iUU- t

FQ8671

It. TITLE llnclude Security Claut/icotton)

An Informal Study of Program Comprehension

11) IIHilllll'TIVL MAHKINCiS

I lll'il III 111 I I I ON, A VAIl AniLITY OF IllfHt

Approved for public release;
distribution unlimited

•j Mi I'll I DM INI. Olli; ANIMATION HI PORT NUMBER (SI

AFOSR-TR. 8 4-0309
7i NAMI (>l MONITOHINQ ORQAMI2A I ION

AEQSJC
;I. Armin ••idii». ./,!/•• um/ mv Cudri

c&sJii** &.* pr*a*l>_
KHOCUIILMENI INSfjUSMlNT IOCNI|/cAT ION NUMBER

F49260-81-C-0067

II) -.IHIIII I Ot I UMIllNI'i N05

I'lli H.fl.iM
t i I. Ml ri i MO

PMOICCT
NO .

230</ Ai
WORK UNIT

NO

17. PERSONAL AUTMOIl(S)

Domeshek, Eric A.; Shapiro, Daniel G.; Dean, Jeffrey S.; McCune, Brian P.
»3«. TYPE OF REPORT
2nd Annual Technical

Report

13b. TIME COVERLO

FRQMLJune 82 ro 31 May 8b
Ut III I'-JHi . \ . . ,l|„ Da: >

March 1984
IS PAGE COUNT

62
16 SUPPLEMENTARY NOTA1 ION

COSATI COOES

I
GROUP SUB GR

18 SUUjtCT TERMS K'.inli.i., mrv ami identify b: bi:> m number!

Program Reference Language (PRL), Extended Program Model
(EPM), Intelligent Program Editor (IPE), program
documentation, artificial intelligence (AI), knowledge base,

l|p ABSTRACT (Continue on rtv*rtr if ntc mury mul ittrnlify h > hl.uk MH "bf"

is report describes work performed during the second year of research on a Program
Reference Language. During this year, a study was conducted in which protocols of
programmers studying a new program (with the intent of debugging it) were analyzed, both
for the vocabulary used and "for indications of strategies adopted in their efforts at
program comprehension. A sampling of programmers' natural vocabulary for referencing
programs was gathered and analyzed. Preliminary steps were taken towards using this data
as the basis for the design of a formal query language for the PRL. The study also raised
some new issues bearing on the implementation of systems which use the PRLs individual
differences imply the need for customization; context-sensitive information management
is important; and useful user interface features war« identified.

20 OlSTRIBUTION/AVAILAOILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED JO SAME AS RPT. Cj< DTlC USERS U

?}• NAME OF RI Sf'ON'.ilu I INDIVIDUAL

Dr. Robert N. Buchal

11 AHMHAl I SI illlllll » CLA'iSlI ICA t ICN

UNCLASSIFIED

'71. II ill II Ni'Vlii tl

(202) 767-4939

.•7' IM ' IM SVMflOt

DO FORM 1473,83 APR EDITION OF 1 JAN 73 IS 00*01 I II

SFCURItYLlASSIHCATlONOF THIS PAGE

• i -"*--

IT'
"1

-

t_:*"'-- ^.-.'..'i-.-.iafc;

I
1

M,**>Vlt*.~,<.*,**.^^>,L„.^-~^,^~,.*.*

18. SUBJECT TERMS (continued)

multiple representations, protocol analysis, user modelling, retrieval
language, debugging, program cliches, program annotations.

Aocession For

~NTIS GRAfcl
DTIC TAB
Unannounced
Justification

BY ,
_Distributton/

Availability Codes
Avail and/or

Dist | Special

**? .„ ,

("1

n

! I

I
:

: .
< •

1 D
i 0
i f]
i

i D
< n
1 n

(

CONTENTS

CONTENTS

Page

I. INTRODUCTION 1

1 . 1 PROJECT HISTORY AND ACCOMPLISHMENTS 1

1.2 RESEARCH OBJECTIVES 4

1. 3 GUIDE TO READING 5

2 . A STUDY OF PROGRAM COMPREHENSION 7

3. DESIGN OF THE STUDY 9

4. THE STANDARD FORM OF THE STUDY 14

5. DATA FROM THE STUDY 18

6. ANALYSIS OF RESULTS 20

6.1 VARIATIONS IN PROGRAMMERS' STYLES OF PROGRAM UNDERSTANDING 20

6.2 VOCABULARY FOR REFERRING TO PROGRAMS 22

6.3 ANALYSIS OF PROGRAM LISTING ANNOTATIONS 24

6.4 DESIRED DOCUMENTATION 25

6 . 5 DESIGN OF THE STUDY 26

7. IMPLICATIONS FOR THE PRL/EPM 28

8. SUMMARY 31

9. PLANS FOR FURTHER DEVELOPMENT 32

10. PERSONNEL 34

10.1 PERSONNEL 34

10. 2 INTERACTIONS 37

10.3 PUBLICATIONS 40

II. REFERENCES 44

APPENDIX A. LISP PROGRAM USED IN PRL STUDY 45

APPENDIX B. QUESTIONNAIRE USED FOR PRL STUDY 54

AT* FORCE OFFICE OF SCIWTIFTC RESEARCH < AFSC,

NOTICE OF !W»WmÄ TO WIC

Distribution Is unlimited.

Cnl«f. T«ohnloal Infor»«tlonDlvl»lon

-i-

•"• •' • — "— _-—

-

!

I

D

fl

D

1

1 1
- h

1

1
'

1 n
f n

ILLUSTRATIONS

ILLUSTRATIONS

3-1: Documentation Packet fro Program Comprehension Study

4—1: Instructions for Program Comprehension Study

Page

12

16

-ii-

•

—T "."

I I Introduction Section 1

0

.

n

II
D
n
i
n

1. INTRODUCTION

This report documents the second year of work on the Program Refer-

ence Language project (PRL), which is a basic research effort aimed at

the creation of a mechanism for flexibly identifying the interesting

portions of programs. Although this work began as an investigation into

query languages which provided textual and syntactic search predicates,

it has grown over the course of our research into a knowledge base about

programs in general, and into a database that documents the structures

present in specific pieces of code. This development is discussed at

length in the annual report for the first year of research, and is

recapped only briefly below (See "Searching a Knowledge Base of Programs

and Documentation", [Shapiro-83] for more details.) This document

focuses on a study of program comprehension which we performed in order

to elicit the information required to design a formal query language for

the PRL.

1.1 PROJECT HISTORY AND ACCOMPLISHMENTS

Our original proposal defined the Program Reference Language as a

tool for flexibly accessing the interesting portions of programs. The

project was a two year effort whose goal was to perform research aimed

at supporting program creation and mainterance by allowing programmers

to locate specific sections of code via textual, syntactic, and historic

-1-

•

T

:

D
Introduction Section 1

search requests (related to a stack of program locations that had been

visited).

The PRL was originally intended as a focused tool for accomplishing

this end. However, in the course of our research, we developed the

hypothesis that the correct approach to supporting program search was to

create a system that captured knowledge about the structure of code. At

the simplest level, this meant being able to locate loops, procedures,

and variables via cross-indexing schemes. On a more sophisticated

plane, it meant creating an automated understanding of the structure of

programs so that regions of code could be located based on their

descriptions. This, in turn, required the definition and support of a

vocabulary for referencing code which was in tune with the terminology

that programmers natively employed.

We took the task of defining such a vocabulary as the major goal

of the PRL. Over the course of our first year of research, it led to

the design of a knowledge base that captured much of the syntac-

tic, semantic and pragmatic (domain of application) structures

in programs, as well as to the creation of a search mechanism which

was able to access that data. During this work, we came to the conclu-

sion that the knowledge required to support program search was in

fact identical to the information required to support a variety of

intelligent tools for manipulating code. Hence, the PRL grew into

a knowledge representation system for recording facts about programs in

-2-

J

'

D

n

•

Introduction Section 1

general, and into a database for documenting the structures present in

specific pieces of code. To emphasize this fact, we renamed the entire

system the Extended Program Model (EPM), and consider the PRL to be

one part.

At the end of our first year of research, we presented a concept

feasibility demonstration of a system which supported program search

through a knowledge base representing a toy ADA program. Although it

required some admittedly tedious commands, the system was able to answer

the request, "find the initializations of the loop which computes the

sum of the test scores". This task involved integrating textual and

syntactic clues, as well as references to data flow information and pro-

gramming cliches. The demonstration system is discussed in [Shapiro-

83], and (together with the design of the EPM) is the subject of two

published papers, at the 1983 Trends and Applications Conference

[Shapiro-83b], and the Seventh International Conference on Software

Engineering [Shapiro-84].

To provide further context for our work, we also explored an appli-

cation of the EPM to the program creation process. We outlined a sys-

tem, called the Intelligent Program Editor (IPE), that employed the

EPM's knowledge base to augment the capabilities of standard text edi-

tors. Using this information, we felt that the IPE would be able to

express semantically oriented consistency constraints, perform large-

scale editing transformations, and even provide support for the

' n
-3-

ni*—i i

I
Introduction Section 1

*"

II

II

r
i
•

template-based creation of programs using the vocabulary defined by the

EPM. In January of 1982, the Intelligent Program Editor moved into

separate development at AI&DS through a research grant from the Office

of Naval Research.

Our plans for the third year of research have focused on

transforming the EPM (as defined above) from the concept

feasibility phase into a more prartical piece of technology. In light

of that goal, we undertook the study reported on in this document,

which was, in essence, an informal experiment aimed at identifying

the vocabulary and the procedures programmers use to search through

code. We administered this test to several professional program-

mers and research personnel within AI&DS. At the time of this writing,

the results of the study are being used to motivate the definition (in

terms of vocabulary and syntax) of the formal query language which will

become the PRL.

1.2 RESEARCH OBJECTIVES

Some of the key research issues which have been addressed in this

project are:

1. What are the most useful ways of referring to parts of a program?
Said in a different way, what vocabulary do programmers currently
use to describe portions of their programs?

2. What information must be included in a knowledge base about pro-

-4-

..
Introduction Section 1

D
0
n
D

in

grams and documentation in order for it to support program search?

3. What information must be included in such a knowledge base for it
to support a variety of intelligent tools for accessing and manipu-
lating code?

4. How should information of this kind be represented?

5. How should application specific knowledge be included?

6. How can user-supplied assertions and other documentation be
acquired and integrated into a knowledge base for use in program
referencing and other tasks?

7. How can search requests be expressed in a uniform reference
language?

8. What form of a search mechanism is required to implement these
reference requests?

9. How can these searches be performed efficiently? In what ways can
search be limited or deferred in order to maintain good reponse
time?

1.3 GUIDE TO READING

The following chapters provide detail on the study of program

comprehension which was performed. Chapter 2 introduces the

specific goals of the study, chapter 3 discusses the design of the

informal experiment that was conducted, chapter 4 gives the actual

information presented to the experimental subjects, chapter 5

describes the data that was collected, chapter 6 begins the

analysis of results, and chapter 7 describes the implications of those

results for the PRL and EPM Chapter 8 provides a brief summary of

this material, while chapter 9 provides a discussion of our future

research plans. Chapter 10 contains a discussion of key research

-5-

ri • —•*****— -• ->•-—••

Introduction Section 1

vi n

personnel involved with this project.

Appendix A contains the listing of the program used for the study,

and Appendix B is the questionnaire that was employed.

•- i

• I ,. • =—-

f I
A Study of Program Comprehension Section 2

2. A STUDY OF PROGRAM COMPREHENSION

To achieve its purpose and to be accepted as a useful tool, the PRL

design would do well to pay attention to the way programmers currently

perform the common task of learning about an unfamiliar program. Except

where it can dramatically increase performance without introducing a

prohibitive learning cost, the PRL should present them with a conceptual

model of the program that is consistent with the one they use now. It

should let them perform operations analogous to the ones they use men-

tally, but it should speed up the process by keeping all the information

integrated together and on-line. It should increase reliability by

automatically deriving information whenever possible, to avoid

discrepancies between the program text and the support information.

Additional functionality may be provided, but it still should aim to

stay within programmers' mental model of programs.

Accordingly, we performed a study intended to explore programmers'

mental models of programs and their methods for program comprehension.

In particular, the focus was on the steps taken in studying an unfami-

liar program, and the vocabulary used to describe parts of it. In addi-

tion, recommendations were solicited for useful extensions to the capa-

bilities of current support tools. We wanted to know not only what pro-

grammers currently do, but also what they wish or imagine they could do

if given the right tools to help. This was not meant to be a controlled

-7-

J

J - •?«••-

\

I
A Study of Program Comprehension Section 2

experiment; rather, it was an exploratory attempt to gather qualitative

data on programmer performance and preferences.

i

The PRL design incorporates different views of the program, each of

which makes different information readily apparent. Some proposed views

are similar to the stages of analysis required by compilers to translate

a program text into a running program. Some views are also similar to

the information captured in certain popular types of documentation, such

as flow charts and cross reference listings. Because these types of

information are already well known programming tools, it seemed clear

that they ought to help program comprehension still more if maintained

in an on-line representation that promotes both human and machine pro-

cessing. One result of this study was to confirm that programmers are

already used to thinking about programs in these ways, and have a

natural vocabulary for describing parts of programs from these views.

-8-

—mm •

""l •

1 Design of the Study Section 3

3. DESIGN OF THE STUDY

The goal in this study was to observe programmers going about the

business of understanding programs. Rather than hand the subjects a

listing and ask them to read it, a debugging task was chosen. Asking

the subjects to fix a problem in some piece of code gave them a common

task to focus on, and stronger motivation to learn about the program.

It was also hoped that the time needed to complete the task would pro-

vide some measure of how well they were comprehending the program.

I!
li
n
n

It was desired that the program used for this study reflect as much

as possible the realities of code as it is found in the normal produc-

tion environment. There were of course limits on the size of the pro-

gram that subjects could be expected to study. A Lisp program which had

originally been written for an earlier study of debugging [Shapiro-81]

was chosen as the sample program. It seemed a good choice because it

contained a single bug that was somewhat subtle, but still deemed dis-

coverable. The program is about 300 lines long, and its listing is

approximately seven pages; it is included as Appendix A. The important

features of this program, aside from its language and length, are that

it was new to all of the subjects in the study, and that it was

presented in a fairly scrambled state. This disorganization was the

result of porting the program across three different environments and

was of value in the study because it truly reflects the state of many

-9-

^ - —*-""-- - - • • • •- - . _

I
Design of the Study Section 3

D
D
f!
li
I

programs.

Programmers generally do not perform their job in a vacuum; they

have some sort of support environment. That support is normally com-

posed both of software tools and documentation. However, for the pur-

poses of the study, it was decided to eliminate the tools so that the

programmers' work on the program, rather than their facility with cer-

tain existing tools, could be observed. Thus even though the program

was in Lisp, the programmers did not have access to a Lisp interpreter

or environment.

It was also decided to pare back the documentation to the bare

minimum, once again to reflect common real world conditions. As an aid

to designing this study, a single subject was run in a pilot trial. The

pilot subject's ignorance turned out to be far too extensive. He was

given the program listing and told to find the bug. he was given no

documentation at first: no information about the purpose of the program,

its inputs and outputs, or even the external manifestation of the bug.

After an hour of studying the listing it became clear that more informa-

tion was needed. It was necessary to ask the program's author for a

brief sketch of the program's purpose and design, and its incorrect I/O

behavior.

Based on this experience, it was decided to provide a limited

amount of documentation. A short packet was prepared, describing the

-10-

. . ^ -A-« J

D Design of the Study Section 3

purpose and workings of the program followed by a bug report with pic-

tures of several successive output states illustrating the bug. This

information packet is shown in Figure 3-1. The subjects were also

allowed to refer to the language manual for the dialect of Lisp used.

The program itself had only a minimal number of comments written by the

original author for his own use. No information on the history of the

program was provided.

One interesting observation in the pilot study was the importance

of writing on the listing. The subject marked up the listing with

highlighters, pens, and pencils in multiple colors. Marginal notes and

assorted doodles left a trail indicating which parts had been studied,

and were used to record discoveries made along the way. These markings

were interesting both as an indication of how the subject attacked the

task, and in their own right as a set of features which might be worth

providing in the interface of an on-line tool. As a result, the sub-

jects were encouraged to write on their listing; the listings were col-

lected at the end of each trial and considered part of the collected

data.

n
11

Based on an evaluation of the data generated by the pilot subject,

and a review of the PRL project's needs, a list of questions was con-

structed for the subjects to focus on while performing the debugging

task. A questionnaire was also designed for them to fill out when they

finished the task. This questionnaire also became the form around which

-11-

 —_ __. ^•^••••H

:
Design of the Study Section 3

PRICRAM DESCRIPTION.

The lest program is a morphogenesis simulation, called PROSPER, which
loosely models the growth of a colony of bacteria. In PROSPER, the user
provides an initial pattern of cells and a collection of production
rules which govern their division. Cells are created with division
times, and cancer (C) cells are expected to divide more frequently than
normal (A) cells. The simulation outputs a trace of the bacteria colony
through time.

The default initial pattern of cells looks like this:

A
A C A

A

Sample productions might look like these:

I I M

Crow A
A A A > A A A

A A

A Carcinoma A
A A A > A C A

A A

A Metastisis A
A C A > A C C A

A A

THE BUG REPORT:

The program was started by calling "OUTER-PROSPER" without any
arguments. This has the effect of starting the program from the
default initial configuration piccured above. The sequence of output
frames generated is reproduced below. The problem is that the user
expected the productions to cause an explosive growth of cancer cells
(cells of type "C"), and instead the A cells grew abundantly.

SAMPLE OUTPUT FROM PROSPER :

A
A C A

A

A
A C C A

A
A A C C A

A

Fram< Irane . Frame 3

A A
A A C C A

A
A A C C A

A A

A A A
A A C C A

A A

Frame <• Frame "j Frame 6

Figure 3-1: Documentation Packet for Program Comprehension Study

-12-

!

..

Design of the Study Section 3

all the results were analyzed.

-13-

I
The Standard Form of the Study Section 4

4. THE STANDARD FORM OF THE STUDY

Ü

II

11

n
n
n

Based on the pilot trial, a basic format was chosen. However, this

format was varied in some details over the course of the several trials,

in response to comments by the subjects as well as our own observations.

This study was not in any sense designed to be a controlled experiment;

a controlled situation did not seem as important as one that reflected a

realistic scenario yet still allowed the observation and recording of

subjects' behavior. For example, when programmers complained that the

trials were too long, the allowed time was reduced from an original

limit of four hours to two hours.

A small documentation packet was given to subjects at the beginning

of the trial. This was the only information the subjects were given

about the program and the bug. This packet is shown in Figure 3-1. It

describes the purpose of the program and a little about its organiza-

tion: namely, the program is like a mathematical game called 'life"

(with which many programmers are familiar), and it is based on produc-

tion rules, which specify how the cells reproduce based on their pattern

of arrangement. The packet describes the bug and gives an example of

the erroneous I/O behavior. The expected behavior of the program was

that the cancer cells would reproduce much more quickly than the normal

cells. Instead, the normal cells grew, and the cancer cells did not.

The error was caused by an improper use of a subroutine that inserted

-14-

 i • ••»I

!: The Standard Form of the Study Section 4

cells into a priority queue ordered by cell division time.

The instructions for the study are shown in Figure 4-1. The basic

task required the subjects to concentrate on finding and fixing the bug

in the program. While they worked at this task, they were requested to

speak out loud to reveal what they were thinking. It was explained to

the subjects what sort of information was desired, and a set of four

questions was provided to focus their introspective reports. Those four

questions are the central issues around which this stuuy is organized.

As the instructions indicate, data was collected by several means.

The primary information came from the subjects themselves as they talked

about what they were doing. Though there was a tape recorder running,

we primarily relied on the experimenter's notes for data. Occasionally

the experimenter interrupted the subjects to remind them of one of the

central focus questions, or to query them specifically about their

current line of attack.

11
- D

P
D

r
•

Following completion of the task, or, more frequently, when time

ran out, the subject was given a questionnaire to complete. This ques-

tionnaire is shown in Appendix B. It presents the four basic questions

for the study, and adds a couple of new questions. The subjects were

asked to comment on the experiment itself, and in particular on the

issue of supporting documentation. Finally, an annotated list of sample

vocabulary for referring to programs was provided, in order to stimulate

-15-

-

r"^«p

The Standard Form of the Study Section 4

INSTRUCTIONS FOR THE EXPERIMENT:

Your task is to find and correct the bug in the program PROSPER. Our
interest is in the way in which you go about that task. In order to
record your process of exploration and understanding, we want you to
feel free to mark up the listing in any way you want. We will also have
a tape recorder running, and encourage you to produce a running
monologue of your thoughts. From time to time, the experimenter may ask
you a question to prod you into revealing what you are thinking about.
The experimenter will also be taking notes on what he thinks you are
doing.

In particular, we would like you to pay attention to the following sorts
of issues and to record comments on them when appropriate:

1) What questions do you ask about the program's structure
and design?

2) What sort of vocabulary do you use to refer to objects
in the program, and the relations between them?

3) What sort of hypotheses do you construct, and how do you
evaluate them?

A) What aids for searching through the program would you
like to have?

Figure 4-1: Instructions for Program Comprehension Study

-16-

I
' HHl^^^^H

r
1

The Standard Form of the Study Section 4

the subjects to generate more new vocabulary.

Ö

n
ii

-17-

m^^Hi^^^^p

I
I

Data from the Study Section 5

: •"

DATA FROM THE STUDY

D
n

D
D
D
0
D
n
n
n

The study was run with five subjects. They were all experienced

programmers, fellow employees at AI&DS. They had varying degrees of

familiarity with the particular dialect of Lisp used in the program.

None of them had any previous knowledge of the program or of the type of

bug it contained.

Of the five subjects, only one actually found the bug in the allot-

ted time. This does not in any way denote failure, since actual debug-

ging was not the focus of our study; rather the emphasis was on observ-

ing how the subjects went about studying the program. However, it was

apparent that the single subject who found the bug exhibited behavior

which differed markedly from the others. All of the subjects spent a

lot of time hand simulating the execution of the code; this simulation

required extra concentration, and errors that resulted often hindered

their efforts. There was substantial difference in the depth to which

subjects followed trains of subroutine calls on early passes through the

code. The successful subject was the one who was the best at staying at

a high level.

-18-

- •—

I
!

c-~

Data from Che Study Section 5

Vocabulary was mainly collected from the subjects' verbalizations,

and was largely uniform across subjects. Similarly, annotations to the

listings, when collected and analyzed, showed relatively consistent pat-

terns across subjects. Additional data was provided by the question-

naires completed by the subjects at the end of each trial.

n

n -19-

-

!

•

li
D
D

1
fl

1

H
1

1
n

1 D
1
, r I

Analysis of Results Section 6

6. ANALYSIS OF RESULTS

This section presents an analysis of the data in the previous sec-

tion. In compiling the results of each trial we largely followed the

format of the questionnaire, however the analysis of the subject's mark-

ings of the program listing was added.

6.1 VARIATIONS IN PROGRAMMERS' STYLES OF PROGRAM UNDERSTANDING

The task we set for the subjects was to find and fix a bug in a

program. It was normally assumed that there was only one bug, and that

it was fairly well localized. This task should have elicited goal

directed understanding; there was no need for the subjects to understand

the entire program. It turned out that these programmers varied consid-

erably in their ability to focus in on the problem.

All the subjects adopted a strategy of making a first pass through

the program at a high level to get an overview of the program's struc-

ture. The plan was to gain a general understanding which would allow

the construction of useful hypotheses. Generally they began at the main

routine and started tracing through the program's execution to some lim-

ited depth. Early on, the focus was on the data structures, and later

on, the routines that manipulate them. In the absence of more complete

documentation this is a necessary information gathering step.

-20-

Analysis of Results Section 6

I
Familiarity with the program's basic structure is intended to aid

generation of hypotheses about the bug. The more specific the

hypothesis, the more specific the knowledge needed to form and then test

it. In fact there are certain very general classes of bug hypotheses

that most programmers will make based on little or no information;

experience indicates that these types of mistakes are nearly universal.

Examples include passing parameters to a subroutine in the wrong order,

and (in Lisp) incorrectly grouping items in parentheses. Checking for

these simple but common mistakes can be time consuming, and if done on

the first pass, may defeat the plan of performing a quick overview.

This approach also allows major features of the program's organization

to escape notice for long periods of time.

This is in fact what typically happened to the subjects in this

study. Drawn on by the possibility of finding some simple error, most

of the subjects tended to push to deeper levels more quickly than they

had intended. They often felt they might as well rule out such problems

in a section of the code during their first reading of it; by staying in

order, they were sure they wouldn't miss anything. Also as one subject

noted, the extra study at these lower levels could potentially prove

useful later on.

I!

n

Only the single successful subject really held to his initial plan

of performing a high level overview; for the type of bug in this study,

this seemed to be the right strategy. The signs of where the problem

-21-

'

I I

n
n
n

Analysis of Results Section 6

might Lie were most apparent when taking a global view of the program,

because one manifestation of the error was an inconsistent usage of a

subroutine call. The successful subject was comparing all the places

where a priority queue insertion operation was performed when he noticed

th*s inconsistency.

Much of a well written program is built out of common structures

known to all programmers. Following the terminology developed by the

Programmer's Apprentice Project at MIT (see [Rich-81] and [Waters-

78]), we call such commonly used components "cliches". The bug was

caused by the incorrect implementation of a list insertion cliche.

Thus, in this case, the understanding of such a cliche was important.

The successful subject was in fact explicitly aware of this

cliche and of its limitations. In general, cliches are important

because they speed understanding by chunking the program into well

understood higher level units. An understanding of the specific limi-

tations and likely failure modes of cliches is also a powerful asset in

debugging programs.

6.2 VOCABULARY FOR REFERRING TO PROGRAMS

The last question on the questionnaire, which dealt with vocabu-

lary, was often partially ignored; this seems due to the unstructured

nature of the question. While most subjects commented on the vocabulary

examples given, they rarely added new examples of their own. New voca-

-22-

-

II Analysis of Results Section 6

bulary then was most often culled from the experimenter's notes of what

the subject said. Analysis of the language used by the subjects in

their introspective reports yields five distinct categories of vocabu-

lary. An explanation of each of these classes, with examples, follows.

0
0
D
D
n
n

1. Computer language specific terminology

For this study the program was written in Lisp and a large
number of Lisp specific terms were common in the subjects' speech.
Names of particular functions and language keywords are bound to
show up, if only to designate locations in the listing, as in the
phrase "The second argument of cons". Function names can also be
used to designate the concepts they represent in the language.
Again, the Lisp function cons creates a new data structure in
memory, so a phrase such as "the cons of a and b" refers to a
language specific entity. Other language specific concepts or ter-
minology for more general concepts were also evident. Subjects
frequently spoke of the binding of variables, a Lisp term for the
value of a variable in a certain context.

2. General programming cliches

The program, despite its disorganization, lapses of style, and
lack of documentation, was largely constructed out of commonly used
programming abstractions (cliches). It made heavy use of a hash
table abstraction and of a priority queue. These were fairly obvi-
ous in the code and were noticed eventually by all the subjects.
Each such cliche comes with some vocabulary commonly used to refer
to its parts and the operations defined for it. Simple examples
include insertion and deletion. The subjects did in fact use this
terminology when talking about parts of these cliches.

3. Domain specific terminology

The domain of the study program was a colony of cells, some of
them cancerous, growing in some environment. While not experts in
cell biology, all the subjects developed some reasonable expecta-
tion of the program's behavior based on their understanding of the
domain. As with the language specific vocabulary, many of these
terms appear as function names, in this case defined and later used
in the program, and similarly as variable names. Subjects fre-
quently found occasion to talk about cells and metastasis. Poten-
tially an even richer source of such terminology is the documenta-

-23-

i

r*~

i
Analysis of Results Section 6

tion that should accompany a program.

4. Natural Language Constructs

In natural language, objects may be referenced in a number of
indirect ways. Anaphora designates references to objects previ-
ously mentioned in the discourse. Definite noun phrases or pro-
nouns may serve this purpose. For example, subjects frequently
designated an argument to a function as "...its first argument."
The "it" refers to the function.

Deixis designates references to objects present in the
environment, either by pointing or description. Such references
are more common when trying to make clear to someone else which
object you are referring to. Deixis was accordingly less common in
this study, as the subjects felt they were primarily talking to
themselves.

5. Idiosyncratic, user-specific views of the world

It was apparent that the subjects developed different models
of the program varying elong idiosyncratic lines. For example, one
subject viewed the several different internal representations of
the cell colony as successive projections (in a mathematical sense)
of the basic representation, which he took to be the events queue.
He used this terminology to talk about the data structures and the
algorithms that mapped between them.

6.3 ANALYSIS OF PROGRAM LISTING ANNOTATIONS

The listings given to the subjects for study were collected at the

end of each trial and analyzed in order to determine what sorts of

interface facilities should be made available to a user in an on-line

tool. Both graphic and textual annotations were common.

The major classes of graphic annotations were highlighting, group-

ing, and connecting. Highlighting was used to focus attention on a part

of the listing, or to make it easier to find again in the future.

II

-24-

- ' • •

•

I
1 . Analysis of Results Section 6

Subjects made use of multiple colors, and underlined, boxed or shaded

the desired object. Grouping generally consisted of drawing a box or

brackets around some items in the listing to identify them as a cohesive

unit. Frequently, text was attached to explain the significance of the

grouping. Connecting was usually done with an arrow, either between

objects in the listing, or between an object and a textual comment added

by the subject to describe the object.

Text was used to record any discoveries the subject deemed worth

remembering. This included both labels and longer comments or explana-

tions. It was scribbled wherever there was space, and connected to some

designated object in the listing.

6.4 DESIRED DOCUMENTATION

[1

n
n

The general attitude of the subjects towards documentation can best

be summed up by a comment one of them made on the questionnaire: "I know

of only one type of documentation that is not especially helpful: wrong

documentation." The only real concern any subject expressed was that

the programmer might be overloaded with irrelevant information. Many

types of documentation were suggested by the subjects, the most novel

perhaps being detailed history information, including answers to such

questions as: who wrote it, when was it written, how was it tested, did

it ever work before, were existing subroutine libraries used, etc. A

good knowledge of this type of history can strongly influence what type

-25-

•

I
I

Analysis of Results Section 6

of bugs are suspected.

6.5 DESIGN OF THE STUDY

In order to allow fine tuning of the study, a question about the

format of the study itself was included on the questionnaire. After

each trial, the recommendations were considered, and slight alterations

were sometimes made to the study. Our major concern was that the sub-

jects find the experience as "natural" as possible.

I

1 1
1

fl
<

1 n
:

t n

The principle findings here were that the subjects had no problem

understanding the task or performing it with an observer present. The

need to talk out loud while studying the program was not viewed as a

significant inconvenience, and in general, subjects felt they performed

as they would have given a comparable real world task.

The major caveat to this appraisal was that normally the subjects

would expect to have better tools. In particular, real debugging would

not get very far without a run time environment. A large effort was

required by the subjects to perform hand simulations of the code, and

the errors they made in the process complicated the effort of finding

the mistake in the program (as well as straining their ability to con-

centrate on the task at hand). Even without the facilities to run pro-

grams, subjects would have greatly appreciated a standard text editor

with its basic string search capabilities.

-26-

r?
«

!

Analysis of Results Section 6

Subjects also felt that the questionnaire was not sharply enough

focused, a problem which we felt derived from the exploratory nature of

the study. The length of the questionnaire had its repercussions, for

instance, few of the subjects gave interesting responses to the final

question on vocabulary.

n

o
D
n

n
-27-

L

qr—^ m

Implications for the PRL/EPH Section 7

7. IMPLICATIONS FOR THE PBL/EPM

This study has several implications for the design of both the PRL

and the EPM. Some of these are confirmations of assumptions and biases

we have been working with since the start of the project; others are

genuinely new issues raised by the performance of the subjects in this

test.

ID
I it

ii
n
n
n

In the confirmation category there were two major observations:

1. The multiple views of the EPM are useful.

The subjects really did look for information at all the levels
from simple text string searches up to searches through all
instances of some cliche action. Examples of PRL operations they
performed by hand include: "Visit in sequence all the functions
called from this function," "Highlight all the exits from this
loop," and "Visit all the places Event-Queue has its value
changed. "

2. Documentation is critically important.

The lack of documentation in this study highlighted the impor-
tance of this information source. Even the small packet provided
was a major improvement over the pilot trial where there was no
documentation at all. Some of the subjects' specific requests for
information, such as about the history of the program, could rea-
sonably be kept available as documentation, easing the task of
debugging considerably. Making all the information available on-
line would clearly be a major advance. These are issues we are
considering both in the IPE project and in a separate project
called the "Documentation Assistant".

-28-

f
Implications for Che PRL/EPM Section 7

II

Though not particular surprising, these results are relevant to our

efforts, and tend to support the assumptions on which we have based much

of work. There were four areas where this study yielded new results:

I !'

i |
I !

n
ö
n
n

1. A sampling of vocabulary for the PRL was gathered.

Of the new results from this study, the most important, and
the one that most directly motivated the study in the first place,
was the sampling of programmer vocabulary. The natural vocabulary
we gathered turned out to be drawn from the five distinct
categories presented earlier: computer language specific terminol-
ogy, computer programming cliches, domain specific terminology,
natural forms of reference, and user specific views of the world.

Of these five categories of vocabulary, the EPM directly pro-
vides representations for the first three: the syntax representa-
tion of the EPM provides computer language specific terminology;
the typical programming pattern representation provides terminology
for programming cliches; and intentional aggregates provide domain
specific terminology. The remaining two categories are not
directly addressed in the current EPM design. To allow the user
full freedom of expression would require the PRL to deal with all
the intricacies of natural language processing (a currently
unsolved problem); moreover, when using a keyboard to enter queries
and commands, it is not clear that a user wants to type out full
sentences (or even sentence fragments). The PRL would require a
very specialized user model to allow users to talk about the pro-
gram in their own highly stylized way.

2. Individual differences imply need for customization.

The study showed some of the ways that individual programmers
vary in work style. To support programmers effectively, it appears
necessary to provide for customization of the work environment. An
intelligent programming environment might maintain a user profile
either based on explicit user requests, or in an advanced system,
based on autonomous observations. While some existing editors
allow a small amount of individual user control over the behavior
of some features, none have extensive user models.

3. Context-sensitive information management is important.

There are three major open questions on this issue. When
should information be available but hidden? Subjects indicated a
desire for many types of documentation, but they did not want to
see all of them all of the time. When should information be
ellided? In order to fit on the screen, code and documentation may

-29-

Implications for tbe PRL/EPM Section 7

have to be condensed. When should information be forgotten? While
much of what subjects wrote on their listings was intended to be
permanent, sometimes they made assumptions or drew conclusions
which they later wanted to change. They also frequently made nota-
tions that were only intended to be temporary reminders of some
postponed task.

4. Useful user interface features were identified.

The study pointed out the need for sophistication in the user
interface. Information must be managed not only internally, but
also in its presentation on the screen. The user should be allowed
to work in the familiar paper and pencil mode if and when appropri-
ate, and should be able to call up all relevant documentation on-
line, but cannot afford to be overwhelmed by cluttering the screen
with everything the system has stored about some piece of a pro-
gram.

.'

-30-

HH

r

1
Sunanary Section 8

8. SUMMARY

The key results of this study were (Da confirmation of the use-

fulness of the conceptual mechanisms provided by the Extended Program

Model, and (2) identification of new areas and issues important for the

development of the PRL and EPM.

The new issues outline a program of further work to pursue in the

continuation of the PRL project. The vocabulary lists have already

spurred the development of a tentative formal syntax for queries in PRL.

Further analysis will lead to refinement of this specification, and

eventually to an extended and modified version which will define the

user language. Observations about how practicing programmers go about

understanding programs will provide significant guidance on future PRL

work. Other new issues will influence design work on the IPE, which

continues under a separate contract.

-31-

Picas for Further Development Section 9

9. FLAMS FOR FURTHER DEVELOPMENT

Further work on the PRL will concentrate on specifying the formal

syntax, complete basic vocabulary, and external user syntax for the

language. The vocabulary data from this study provide a good starting

point for such an effort. We plan to define a relatively simple,

strongly constrained syntax for the system's internal use, while provid-

ing a looser, more forgiving syntax for the user. Given these two lev-

els of the language, we must design a method for mapping between them.

I!

n
o
n
n

There are several issues highlighted by this study that we will not

pursue- The first of these is the need for strong support in the debug-

ging task, ideally in the form of a dynamic debugging environment. We

also do not plan to tackle head-on the problem of processing uncon-

strained natural language which is a large area of research that is not

directly related to the PRL. Finally, we do not intend to model each

individual user so as to understand their personal idiosyncratic vocabu-

laries.

We remain uncommitted as to how much of the high level modeling of

users and domains we will be able to handle. These have the potential

for significant payoff, and are the most likely areas for introducing

additional intelligence into the system, beyond its basic understanding

of the programming domain itself. Such modeling is, like natural

-32-

Plans for Further Development Section 9

langut^-j, a major research effort in its own right, but one which is

more directly germane to the goal of developing intelligent aids to

software comprehension.

1
M

1 n
IV

n
•

-33-

Personnel Section 10

10. PERSONNEL

. •

n

D
D
n

in
n

10.1 PERSONNEL

The Program Reference Language (PRL) research project is being per-

formed within the User Aids Program of AI&DS, with Dr. Brian P. McCune,

Program Manager, as Principal Investigator. Other members of the AI&DS

technical staff who are contributors to the project include Jeffrey S.

Dean, Eric A. Domeshek, Michael A. Brzustowicz, and Daniel G. Shapiro.

Dr. Brian P. McCune is the Principal Investigator of the PRL pro-

ject. He received his Ph.D. in Computer Science from Stanford Univer-

sity in 1979; the title of his thesis was "Building Program Models

Incrementally from Informal Descriptions." During the past decade, Dr.

McCune has done research in the areas of artificial intelligence,

software systems, and computer architecture, with emphasis on artificial

intelligence approaches to software development and maintenance, infor-

mation retrieval, database management, hypothesis formation, planning,

and distributed processing. He has been the principal investigator of

research projects to select and design candidate AI tools for assisting

in the maintenance of ADA programs (sponsored by Rome Air Development

Center), to design an intelligent program editor for ADA, to determine

-3*-

 ,

I Personnel Section 10

the feasibility of automatically generating operating systems, and to

design and implement a knowledge-based system for textual information

retrieval. Dr. McCune is an Associate Editor of The Al Magazine. He

has been invited to discuss the application of artificial intelligence

to defense problems numerous times, both at workshops and in published

papers.

Jeffrey S. Dean has recently begun to play a key role in the PRL

project; he is currently leading the related Intelligent Program Editor

project, and was previously the leader of the AI&DS Software Maintenance

Project, which defined advanced Ada trols for software maintenance. He

received his Masters degree in Computer Science/Computer Engineering

from Stanford University, where he worked on the automatic derivation of

operating systems. His main research interest is the application of AI

to software tools. He came to AI&DS in January 1981 from Bell Telephone

Laboratories, where he was involved in the development and maintenance

of the UNIX operating system and its utilities.

n
n
n

Daniel G. Shapiro has been contributing to the PRL project since

joining AI&DS in October 1981, after receiving a Masters degree in

electrical engineering and computer science from the Massachusetts

Institute of Technology. His research interests include artificial

intelligence, expert systems, and software engineering. At AI&DS he has

done work on expert systems for program and documentation editing,

information retrieval, and mission planning. His masters thesis, enti-

-35-

•

Personnel Section 10

tied "Sniffer: A system that Understands Bugs," involved the design and

implementation of a semantics-based debugger for the Programmer's

Apprentice project at the MIT Artificial Intelligence Laboratory. He

also taught software engineering courses at MIT.

I
•

11 n
1 •

[i
1
1

Eric A. Domeshek was responsible for much of the PRL experiment

which studied how people think about programs. Mr. Domeshek received an

A.B. in Physics from Harvard College. His course work also emphasised

computer science and cognitive science. His technical interests are in

Artificial Intelligence, particularly knowledge representation, and in

computer graphics.

Michael A. Brzustowicz has been involved with the PRL project since

joining AI&DS in November 1983. He received an S.B. degree in Physics

from the Massachusetts Institute of Technology in 1979 and received his

M.S.E.E. in Computer Engineering from Carnegie-Mellon University in

1980; his thesis work was entitled "A System for the Implementaiton of

Models of Reasoning with Uncertain Data." Mr. Brzustowicz's current

areas of interest include Artificial Intelligence, Software Engineering,

Ergonomie User Interfaces, and Computer Aided Processes. Prior to join-

ing AI&DS, Mr. Brzustowicz worked for the Development Systems Software

Group of the Semiconductor Division of Texas Instruments, and for the

Unix Development Group at Bell Laboratories.

-36-

-

Personnel Section 10

10.2 INTERACTIONS

Dr. Brian P. McCune is an Associate Editor of The AI Magazine. the

publication of the American Association for Artificial Intelligence. He

is on the Editorial Advisory Board of Defense Electronics and also The

Artificial Intelligence Report.

Dr. McCune was an invited speaker to COMPSAC '83 (November 1983)

and EASCON '83 (September 1983), and was an invited participant to

Knowledge Based Software Assistant Workshop at AAA1-83 (August 1983).

He attended the NAVAIR/ONR Aviation Software Workshop (October 1983),

the DARPA Formalized Software Development Workshop (November 1983), the

Conference on Inference Theory and AI (November 1982), and the Software

Maintenance Workshop (December 1983).

II

n
ii

ii

In addition to lectures associated with papers that appeared in

published conference proceedings, project staff members have given

numerous lectures around the country. Dr. McCune has been lecturing

throughout the federal government on software maintenance and intelli-

gence problems and the potential of artificial intelligence to help

solve them. Along with Daniel G. Shapiro, he presented results from

the PRL project to Dr. Northrup Fowler III and Douglas White of RADC at

AI&DS in December 1982.

-37-

I _

I Personnel Section 10

I
Dr. McCune was one of twelve technologists selected to participated

in the Government-sponsored Conference on Inference Theory and Artifi-

cial Intelligence, held in Leesburg, Virginia, in November 1982 to dis-

cuss how artificial intelligence, decision analysis, and inference

theory might be combined to enhance the production of intelligence. Dr.

McCune attended the DoD Software Initiative Workshop in Raleigh, North

Carolina, in February 1983.

11
1

0

0
fl

- n
i
ii

Dr. McCune attended the Eighth International Joint Conference on

Artificial Intelligence (IJCAI-83), held in Karlsruhe, Germany, in

August 1983; the National Conference on Artificial Intelligence (AAAI-

83), Washington D.C., August 1983; and the Symposium on Intelligence

Applications of Advanced Computer and Information Technology: Focus on

Artificial Intelligence, sponsored by the Offices of Research and

Development and Scientific and Weapons Research, Central Intelligence

Agency, and held in Washington, D.C, November 1982.

Dr. McCune has been interfacing heavily with both operational and

developmental commands in the Air Force and elsewhere in DoD and indus-

try in order to understand current and future problems of software

development and maintenance. Within the Air Force, Dr. McCune has met

with personnel at the Air Force Office of Scientific Research, Rome Air

Development Center, Wright Aeronautical Laboratories, Foreign Technology

Division, Strategic Air Command headquarters, Air Force Communications

Computer Programming Center, and Air Force Satellite Control Facility.

-38-

• • _____

!

I
Personnel Section 10

Elsewhere in DoD he has talked with the Defense Intelligence Agency,

Office of the Undersecretary of Defense for Research and Engineering,

Defense Advanced Research Projects Agency, DoD STARS Program, ADA Joint

Program Office, Office of Naval Research, Naval Electronics Systems Com-

mand, Naval Sea Systems Command, Naval Intelligence Command, Naval

Research Laboratory, Naval Ocean Systems Center, Naval Intelligence

Center, Naval Weapons Center, Army Research Office, Army Center for Tac-

tical Computer Systems, and Army Ballistic Missile Defense Advanced

Technology Center.

10

B

Dr. McCune has also visited numerous universities and research

centers to assess the state of the art in automatic programming at first

hand. Places visited include Harvard University, Massachusetts Insti-

tute of Technology, Carnegie-Mellon University, Duke University, Univer-

sity of California at Irvine, and Stanford University.

Jeffrey S. Dean presented a paper on a study of software mainte-

nance at the Software Maintenance Workshop (December 1983). He attended

the Symposium for Application and Assessment of Automated Tools for

Software Development (November 1983); AAAI-83; IJCAI-81; the Working

Conference on Automated Tools for Information Systems Design and

Development, held in New Orleans in January 1982 and sponsored by IFIP

Working Group 8.1 on Desigr and Evaluation of Information Systems; and

UNICOM, the semiannual UNIX users' conference (January 1983).

-39-

li

Personnel Section 10

Daniel G. Shapiro was a panelist at the ACM S1GS0FT/SIGPLAN

Software Engineering Symposium on High-Level Debugging, held in Pacific

Grove, California, in March 1983. He presented papers on the PRL at the

IEEE Trends and Applications Conference (May 1983) and the Seventh

International Conference on Software Engineering (March 1984). He

presented papers on information retrieval at AAAI-83 and IJCAI-83.

Eric A. Domeshek attended the Symposium for Application and Assess-

ment of Automated Tools for Software Development (November 1983) and

AAAI-83.

Michael A. Brzustowicz attended the Symposium for Application and

Assessment of Automated Tools for Software Development (November 1983).

n
n
n

10.3 PUBLICATIONS

Members of PRL project staff have published a number of papers;

reprints of those papers most relevant to the PRL project have been

included as Appendices to this proposal. A cumulative chronological

list of publications appearing in technical journals and conference

proceedings is listed below:

Daniel G. Shapiro, Jeffrey S. Dean, and Brian P. McCune, "A Knowledge
Base for Supporting an Intelligent Program Editor," 7th International
Conference on Software Engineering, March 1984.

Andrew S. Cromarty, Daniel G. Shapiro and Michael R. Fehling, "Still
Planners Run Deep: Shallow Reasoning for Fast Replanning," Proceedings,
Society of Photo-Optical Instrumentation Engineers, Technical Symposium
East, 1984, to appear.

-40-

i

I

I Personnel Section 10

I

III
0

n
n

Jeffrey S. Dean and Brian P. McCune, "An Informal Study of Software
Maintenance Problems," Proceedings, Software Maintenance Workshop,
December 1983.

Brian P. McCune and Jeffrey S. Dean, "Trends for Advanced Software
Tools," Defense Science 2001+ (reprint of EASCON '83 paper),
December 1983.

Brian P. McCune, Richard M. Tong, Jeffrey S. Dean, and Daniel G.
Shapiro, "RUBRIC: A System for Rule-Based Information Retrieval,"
Proceedings, COMPSAC 1983, November 1983.

Brian P. McCune and Jeffrey S. Dean, "Trends for Advanced Software
Tools," invited paper, Proceedings, EASCON '83, September 1983.

Richard M. Tong, Daniel G. Shapiro, Brian P. McCune, and Jeffrey S.
Dean, "A Rule-Based Approach to Information Retrieval: Some Results and
Comments," Proceedings, National Conference on Artificial Intelligence,
Washington, D.C., August 1983.

Richard M. Tong, Daniel G. Shapiro, Jeffrey S. Dean, and Brian P.
McCune, "Performance Analysis of a Rule-Based Information Retrieval
System," 1983 National Conference on Artificial Intelligence,
Washington, D.C., August 1983.

Richard M. Tong, Daniel G. Shapiro, Jeffrey S. Dean, and Brian P.
McCune, "A Comparison of Uncertainty Calculi in an Expert System for
Information Retrieval," Eighth International Joint Conference on
Artificial Intelligence, Karlsruhe, West Germany, August 1983.

Brian P. McCune and Robert J. Drazovich, "Radar with Sight and
Knowledge," invited paper, Defense Electronics. August 1983.

Richard M. Tong and Daniel G. Shapiro, "An Experiment with Multiple
Valued Logics in an Expert System," Proceedings of the IFAC Symposium on
Fuzzy Information, Knowledge Representation and Decision Analysis,
Marseille, France, July 1983.

Daniel G. Shapiro and Brian P. McCune, "The Intelligent Program Editor:
A Knowledge-Based System for Supporting Program and Documentation
Maintenance," Proceedings of the Trends and Applications Conference of
the IEEE, May 1983.

Gerald Wilson, Eric A. Domeshek, Ellen L. Drascher, and Jeffrey S. Dean,
"The Multipurpose Presentation System," Proceedings, Very Large Data
Base Conference, 1983.

Jeffrey S. Dean and Brian P. McCune, Advanced Tools for Software
Maintenance. Rome Air Development Center, RADC-TR-82-313, December

-41-

i

1 f!
i I]
1

: !

I '

1

n
1 n

Personnel Section 10

1982.

Brian P. McCune, Jeffrey S. Dean, Daniel G. Shapiro, and Richard M.
Tong, "Rule-Based Information Retrieval," Workshop on Intelligence
Applications of Advanced Computer and Information Technology: Focus on
Artificial Intelligence. Office of Research and Development, Office
of Scientific and Weapons Research, Central Intelligence Agency,
Washinton, D.C., November 1982.

Robert J. Drazovich, Brian P. McCune, and J. Roland Payne, "Artificial
Intelligence: An Emerging Military Technology," invited paper,
Conference Record. EASCON '82: Fifteenth Annual Electronics and
Aerospace Systems Conference. Institute of Electrical and Electronics
Engineers, Inc., Washington, D.C., September 1982, Pages 341-348.

Brian P. McCune, editor, "AI at AI&DS," The AI Magazine, Volume 2,
Number 2, Summer 1981, pages 44-47.

Daniel G. Shapiro, "Sniffer: A System that Understands Bugs,"
MIT/AIM/638, June 1981.

Brian P. McCune, "Incremental, Informal Program Acquisition,"
Proceedings of the First Annual National Conference on Artificial
Intelligence. Stanford University, Stanford, California, August 1980,
pages 71-73.

Daniel G. Shapiro, "A Proposal for Sniffer, A System that Understands
Bugs," MIT/AI Working Paper 202, July 1980.

Cordell Green, Richard P. Gabriel, Elaine Kant, Beverly I. Kedzierski,
Brian P. McCune, Jorge V. Phillips, Steve T. Tappel, and Stephen J.
Westfold, "Results in Knowledge-Based Program Synthesis," IJCAI-79:
Proceedings of the Sixth International Joint Conference on Artificial
Intelligence. Volume 1, Computer Science Department, Stanford
University, Stanford, California, August 1979, pages 342-344.

George R. Lewis, J. Shirley Henry, and Brian P. McCune, "The BTI 8000:
Homogeneous, General-Purpose Multiprocessing," in Richard E. Merwin,
editor, 1979 National Computer Conference, AFIPS Conference
Proceedings. Volume 48, AFIPS Press, Montvale, New Jersey, June 1979,
pages 513-528.

Cordell Green and Brian P. McCune, "Knowledge-Based Programming
Applications," Applications of Image Understanding and Spatial
Processing to Radar Signals for Automatic Ship Classification:
Proceedings of a Workshop. Naval Electronic Systems Command,
Washington, D.C., February 1979, pages 94-99.

Cordell Green and Brian P. McCune, "Application of Knowledge-Based
Programming to Signal Understanding Systems," Distributed Sensor

-42-

II Personnel Section 10

Nets: Proceedings of a Workshop. Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, December 1978,
pages 115-118.

Brian P. McCune, "The PS1 Program Model Builder: Synthesis of Very
High-Level Programs," Proceedings of the Symposium on Artificial
Intelligence and Programmin Languages, SIGPLAN Notices. Volume 12,
Number 8, SIGART Newsletter. Number 64, August 1977, pages
130-139.

-43-

-

: I

APPENDIX A

Lisp Program Used in PRL Study

This appendix contains a listing of the Lisp
program used in the PRL study.

n

n
 __ ____

-

Ill«

I

References Section 11

11. REFERENCES

1. Rich, Charles, "Inspection Methods in Programming", AI-TR-604,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Mass., 1981.

2. Shapiro, Daniel G., "Sniffer: A System that Understands Bugs",
AIM-638, Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, Cambridge, Mass., 1981.

3. Shapiro, Daniel G., McCune, Brian P., "Searching a Knowledge Base
of Programs and Documentation", AI&DS TM-1014-2, January 1983.

4. Shapiro, Daniel G., McCune, Brian P., "A Knowledge Based System for
Supporting Program and Documentation Maintenance", Proceedings,
Trends and Applications, 1983, pp. 226-232.

5. Shapiro, Daniel G., Dean, Jeffrey S., and McCune, Brian P., "A
Knowledge Base for Supporting an Intelligent Program Editor",
Proceedings, 7th International Conference on Software Engineering,
1984, to appear.

6. Waters, Richard C., "Automatic Analysis of the Logical Structure of
Programs", AI-TR-492, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Mass., 1978.

^*"

(declare
(special events-queue div-time grid transform-lib directions

north south east west prosper-display-buffer))

(defun outer-prosper (&optional (evq (make-an-evq)))
(create-prosper-display-buffer)
(prosper evq))

(defun prosper (events-queue)
((lambda (transform-lib grid)

(prog (matches cell div-time)
(grid-init events-queue grid)

B

I

11
D

1
1

n

1!
1

li

foo
(cond ((null events-queue) (return nil)))
(display-grid grid)
(setq cell (top-cell events-queue))
(setq div-time (top-time events-queue))
(setq events-queue (rest events-queue))
(setq matches (find-transforms cell transform-lib))
(apply-transfonns matches cell grid)
(go foo)))

(create-transform-lib)
(create-grid)))

;the def for metastasize can be snarfed off of the plans ;as well as the
def for events-queue-insert

(defun grid-init (evq grid)
(do ((q evq (rest q))

(tope nil))
((null q) nil)

(setq tope (top-cell q))
(ht-insert (cell-location tope) tope grid)))

(defun create-grid ()
(let ((g (array g t 21)))

g))

(defun top-time (evq) (cond ((null evq) nil) ((car (car evq))))) (defun
top-cell (evq) (cond ((null evq) nil) ((cdr (car evq))))) (defun rest
(evq) (cond ((null evq) nil) ((cdr evq))))

(defun find-transforms (key-cell tlib)
(ht-lookup-all (cell-type key-cell) tlib))

(defun apply-transforms (candidates key-cell grid)
;run the filter function associated with each candidate.
;if it succeeds, apply the transform to the bindings returned by the

-

mm

;filter function only run the first matching transform
(do (Urs candidates (cdr trs))

(transform nil)
(bindings nil))

((null trs) nil)

(setq transform (car trs))
(setq bindings (apply-selector (car transform) key-cell grid))

^bindings is a list of cells which form the context for the key
cell

the
;ALL selector functions have the key-cell as the last element of

;bindings returned
(cond (bindings (return (apply (car (cdr transform)) bindings))))))

(defun apply-selector (selector-fun key-cell grid)
;takes care of mapping the selector function all possible ways
;onto the grid
(do ((nominal-north (+ 1 (random 4)) (+ 1 nominal-north))

(tries 1 (+ 1 tries))
(win nil))

((> tries 4) nil)
(let ((north (nth nominal-north directions))

(west (nth (+ nominal-north 1) directions))
(south (nth (+ nominal-north 2) directions))
(east (nth (+ nominal-north 3) directions)))

(and (setq win (funcall selector-fun key-cell grid))
(return win)))))

(defun north (loc) (loc+ north loc)) (defun south (loc) (loc+ south
loc)) (defun east (loc) (loc-*- east loc)) (defun west (loc) (loc-*- west
loc))

(defun north-cell (c g) (ht-lookup (north (cell-location c)) g)) (defun
south-cell (c g) (ht-lookup (south (cell-location c)) g)) (defun east-
cell (c g) (ht-lookup (east (cell-location c)) g)) (defun west-cell (c
g) (ht-lookup (west (cell-location c)) g))

(defun display-griu (grid)
(clear-prosper-display-buffer)
(map-over-al1-hc-datums grid 'place-cell-in-buffer)
(print-prosper-display-buffer))

(defun events-queue-insert (item time evq)
(prog (nq oq entry)

(setq entry (cons time item))
(cond ((or (null evq) (before? entry (car evq)))

(return (cons entry evq))))
(setq nq (cdr evq))
(»etq oq evq)

H

• I

lp (cond ((or (null nq) (before? entry (car nq)))
(rplacd oq (cons entry nq))
(return evq)))

(setq oq nq)
(setq nq (cdr nq))
(go lp)))

(defun before? (iteml item2)
(< (car iteml) (car item2)))

(defun make-cell (type loc dive) (copy-the-damn-thing (list type loc
dive))) (defun cell-type (cell) (car cell)) (defun division-count (cell)
(car (cdr (cdr cell)))) (defun cell-location (cell) (car (cdr cell)))
(defun change-cell-type (cell new-type) (rplaca cell new-type)) (defun
increment-division-count (cell)

(rplaca (cdr (cdr cell)) (+ 1 (division-count cell)))) (defun create-
cancer-cell () (copy-the-damn-thing '(c () 1)))

(defun make-location (x y) (list x y)) (defun loc-x (loc) (car loc))
(defun loc-y (loc) (car (cdr loc))) (defun loc+ (11 12) (make-location
(+ (loc-x 11) (loc-x 12))

(+ (loc-y 11) (loc-y
loc- (11 12) (make-location (- (loc-x 11) (loc-x 12))

(- (loc-y 11) (loc-y

12)))) (defun

12))))

;;;;;;;;;;;;;;; HASH TABLE ABSTRACTION ;;;;;;;;;;;;;;; ; this hash table
indexes K-enitities (representing monocells) by K-datums ; which
represent cell locations

(defun ht-lookup (key ht)
;find the appropriate bucket, then search it for a tag which
;is K-equal key. Return the cdr of the alist element if one is found.

(let ((bucket (ht (bucket-select key ht)))
(item nil))

(setq item (assoc key bucket))
(and item (cdr item))))

(defun ht-lookup-all (key ht)
(let ((bucket (ht (bucket-select key ht))))

(cond ((null bucket) nil)
((mapcar

'(lambda (x) (cond ((equal (car x) key) (cdr x))))
bucket)))))

(defun ht-delete (key ht)
; Find the item (a monocell) in the bucket indexed by (k-qual key).
; Splice it out if it is there,
(let ((bucket-num (bucket-select key ht))

(bucket nil))

fl

(setq bucket (ht bucket-num))
(cond ((and bucket (k-equal (caar bucket) key))

(store (ht bucket-num) (cdr bucket)))
((do ((old bucket new)

(new (cdr bucket) (cdr new)))
((null new) nil)

(and (k-equal (caar new) key)
(return (rplacd old (cdr new)))))))

key))

(defun ht-insert (key item ht)
(let ((bucket-num (bucket-select key ht))

(pair (cons key item)))
(store (ht bucket-num) (cons pair (ht bucket-num)))
key))

(defun bucket-select (key ht)
(remainder (sxhash key) 21))

(defun sxhash (key)
(apply '+ (exploden key)))

(defun ht-dump (ht)
(do ((i 0 (+ 1 i)))

((> i 20))
(print (ht i))
(terpri)))

(defun map-over-all-ht-datums (ht fun)
(do ((i 0 (+ i 1)))

((> i 20))
(mapcar '(lambda (x) (funcall fun (cdr x))) (ht i))))

;(defun ht-create () ; (let ((g (array nil t 21))) ; g))

;STUB ALERT (defun k-equal (al a2) qual al a2)) ;a stub

;;;;;; the other prosper functions ;;;;;;;

(defun make-room-between (cl c2 g)
(let ((addend (loc- (cell-location c2) (cell-location cl))))

(push-out c2 addend g)))

(defun push-out (cell addend grid)
(let ((new-loc (loc+ (cell-location cell) addend)))

(cond ((null (ht-lookup new-loc grid)) (grid-insert cell new-loc
grid))

(t (push-out (ht-lookup new-loc grid) addend grid)
(grid-insert cell new-loc grid)))))

II
•-•" i

-

il
(defun grid-insert (cell location grid)

jremove the cell from its old location in the grid,
(ht-delete (cell-location cell) grid)

(ht-delete location grid) jremove whatever cell currently lurks at
location

;side effect the cell!
(move-cell cell location grid))

(defun move-cell (cell loc grid)
;just blithely crams the new fella into the grid
;side effects the cell
(rplaca (cdr cell) loc) ; (k-eval '(rplaca (cdr ,cell) loc))
(ht-insert loc cell grid))

;(defun make-location (x y) ; (k-cons x y))

;(defun loc-y (location) (k-car (k-cdr location))) ; (defun loc-x
(location) (k-car location))

(defun make-an-evq ()
(copy-the-damn-thing
'((0 c (0 0) 1) (3 a (0 1) 1) (3 a (0 -1) 1) (3 a (1 0) 1) U a (-1

0) 1))))

(defun copy-the-damn-thing (thing)
(cond ((dtpr thing)

(cons (copy-the-damn-thing (car thing))
(copy-the-damn-thing (cdr thing))))

(thing)))

(defun create-prosper-display-buffer ()
(defprop prosper-display-buffer 15 width)
(defprop prosper-display-buffer 15 height)
(setq prosper-display-buffer (array prosper-display-buffer t

(get 'prosper-display-buffer
'width) (get 'prosper-display-
buf fer 'height))))

(defun clear-prosper-display-buffer (&aux width height)
(fillarray prosper-display-buffer (list 'I I)))

(defun place-eel1-in-buffer (cell &aux (cell-loc (cell-location cell))
width height x-pos y-pos)

(setq width (get 'prosper-display-buffer 'width))
(setq height (get 'prosper-display-buffer 'height))
(setq x-pos (+ (loc-x cell-loc) (fix (/ width 2))))
(setq y-pos (••• (loc-y cell-loc) (fix (/ height 2))))
(•tore (prosper-display-buffer y-pos x-pos) (cell-type cell)))

[I

s

(defun print-prosper-display-buffer (&aux width height)
(setq width (subl (get 'prosper-display-buffer 'width)))
(setq height (subl (get 'prosper-display-buffer 'height)))
(do i 0 (addl i) (>& i height)

(terpri)
(do j 0 (addl j) (>& j width) (princ (prosper-display-

buf fer i j))))
(terpri))

Ml)))))) transforms and selector functions ;;;;;;;; (defun a-cell-
with-room-to-grow (key-cell grid)

(let ((north-neighbor (north-cell key-cell grid)))
(and (eq (cell-type key-cell) 'a)

(null north-neighbor)
(list (north (cell-location key-cell)) key-cell))))

(defun grow-A-cell (empty-location key-cell)
(increment-division-count key-cell)
(prog (new-cell)

(setq new-cell (make-cell 'a empty-location 1))
(grid-insert new-cell(cell-location new-cell) grid)
(setq events-queue (events-queue-insert new-cell (+

div-time 5) events-queue))
(setq events-queue (events-queue-insert key-cell (+

div-time 5) events-queue))))

(defun gotta-b-neighbor (key-cell grid)
(let ((north-neighbor (north-cell key-cell grid)))

(and (eq (cell-type north-neighbor) 'b) (list key-cell))))

(defun age-prematurely (key-cell)
(increment-division-count key-cell)
(increment-division-count key-cell)
(increment-division-count key-cell)
(setq events-queue (events-queue-insert key-cell (+ div-time

3) events-queue)))

(defun surrounded-by-A-cells (key-cell grid
&aux (key-loc (cell-location key-cell)))

;a filter function for the carcinoma transform
[returns a list of cells which are the context for the metast

transform
(let ((tc (north-cell key-cell grid))

(be (south-cell key-cell grid))
(re (east-cell key-cell grid))
(lc (west-cell key-cell grid)))

(and
(not (eq (cell-type key-cell) 'c))
tc (eq (cell-type tc) '»)
be (eq (cell-type be) 'a)

n

—*-. BBB

rc (eq (cell-type re) 'a)
lc (eq (cell-type lc) 'a)
(list key-cell))))

0

(defun carcinoma (key-cell)
(increment-division-count key-cell)
(change-cell-type key-cell 'c)
(setq events-tjueue (events-queue-insert key-cell (• div-time

1) events-queue)))

(defun enclosed-cancer-cell (key-cell grid)
(let ((tc (north-cell key-cell grid))

(be (south-cell key-cell grid))
(rc (east-cell key-cell grid))
(lc (west-cell key-cell grid)))

(and
(eq (cell-type key-cell) 'c)
tc
be
rc
lc
(list tc key-cell))))

(defun cancer-eel1-with-one-neighbor (key-cell grid)
(let ((buddy (west-cell key-cell grid)))

(and buddy (list buddy key-cell))))

(defun metastasize (right-cell key-cell)
((lambda (new-cell location)

(increment-division-count key-cell)
(make-room-between key-cell right-cell grid)
(grid-insert new-cell location grid)
(events-queue-insert new-cell (+ div-time 2) events-queue)
(events-queue-insert key-cell (+ div-time 2) events-queue))

(create-cancer-cell) (cell-location right-cell)))

(defun old-aged-cell (key-cell grid)
(and (> (division-count key-cell) A) (list key-cell)))

(defun die (key-cell)
(ht-delete (cell-location key-cell) grid))

(defun cancer-cell-filter (key-cell grid)
(cond ((eq (cell-type key-cell) 'c) (list key-cell))))

(defun cancer-eells-never-die (key-cell)
(setq events-queue (events-queue-insert key-cell (+ div-time

5) events-queue)))

(defun create-transform-lib (&aux tl)

ii

n

(setq tl (array tl t 21)) ; (ht-insert 'b (list 'surrounded-by-A-
cells 'carcinoma) tl)

(ht-insert 'a (list 'surrounded-by-A-cells 'carcinoma) tl)
(ht-insert 'a (list 'a-cell-with-room-to-grow 'grow-A-cell) tl)

; (ht-insert 'f (list 'surrounded-by-A-cells 'carcinoma) tl) ; (ht-
insert 'c (list 'gotta-b-neighbor 'age-prematurely) tl) ; (ht-insert 'c
(list 'cancer-cell-filter 'cancer-cells-never-die) tl)

(ht-insert 'c (list 'cancer-eell--with-one-neighbor 'metastasize) tl) ;
(ht-insert 'c (list 'enclosed-cancer-cell 'metastasize) tl)

tl)

; (ht-insert 'c (list 'old-aged-cell 'die) tl)

;; unused transforms ;;;

(defun cees-abound (key-cell grid)
(let ((neighbor (west-cell key-cell grid)))

(and neighbor (eq (cell-type neighbor) 'c) (eq (cell-type key-call)
'c)

(list neighbor
key-cell))))

Hiil globale ;;;;;;; (setq directions (list
(make-location 0 1)
(make-location -1 0)
(make-location 0-1)
(make-location 1 0))) (rplacd (last directions)

directions) (setq north (nth 1 directions)
west (nth 2 directions)
south (nth 3 directions)
east (nth 4 directions))

(defun block-a-cells ()
(copy-the-damn-thing

'((10 c (0 0) 1) (24 a
(24 a (1 0) 2) (24 a
(24 a (-1 -1) 2))))

(0 1) 2)
(1 1) 2)

(24 a
(24 a

(0 -1)
(1 -1)

2)
2)

(24 a
(24 a

(-1 0) 2)
(-1 1) 2)

 — —"

I
"

APPENDIX B

Questionnaire Used for PRL Study

,
1

1
n
D

I 1
^^ml^^^ma^m ^^^•k..

i
I

This appendix contains the questionnaire used in the study
(described earlier in this document) of how people understand
programs.

DEBUGGING EXPERIMENT POST-MORTEM

I We've taped your ramblings as you debugged the program. We've harassed
you with questions as you tried to work. We've got the copy of the
listing that you marked up. We've taken notes on what we saw you doing.
Now...

These questions are to be answered immediately after you have completed
the debugging task. Try to answer them as completely and accurately as
possible. This is our last chance to figure out what you thought you
were doing as you debugged the program.

1) What questions did you ask about the program's structure
and design?

2} What sort of vocabulary did you use to refer to objects
in the program, and the relations between them?

3) What sort of hypotheses did you construct, and how did you
evaluate them?

fl
(1

4) What aids for searching through the program would you have liked':

5) Do you have any comments about the format of this experiment?
Please vent your spleen here:
a] Suggest types of additional program documentation?
b] Would you like notes from author on program's intent?
c] Would labels that warn you about outdated code help?
d] Your gripe here...

6) Programmers often find themselves in the situation of having to
maintain systems about which they know little. This experiment was an
attempt to simulate that experience. We are in the process of defining
a tool, called the PRL, to aid in program comprehension. We are
soliciting your suggestions for such a tool, and your evaluation of our
vision of the PRL.

Please look over the lists below. In it we have presented our breakdown
of the classes of objects and relations you might want to talk about in
analyzing a program. Would it be useful to be able to search for these
types of objects and relations? How natural is the vocabulary? Feel
free to suggest synonyms or rephrasings you find more natural. Also
please add any useful concepts you think we have left out.

11!
D

'
•_-, ig« •

n

•

A) What types of objects would you like to be able to search for?

Text Strings

Syntactic Analysis
Variable
Function
Let
Loop
Exits - "Show the exits from the splice-in

loop of function F00."

Cliches
List-traversal
Ordered-list
Splice-in
Pr ior ity-q ueue
Enqueue-operation
Dequeue-operation
Hash-table
Production-system
Pattern / Trigger
Action / Transformation

i

fl

n
i

B) What type« of relations are worth talking about?

Functional Composition
Calls
Called-by
Recursive
Mutually-recursive
Main-loop
Top-level-subroutine

—

..

Control Flow
(Sometimes/Always) Calls

(Sometimes/Always) Returns

Data Flow
(Sometimes/Always) Accesses

(Sometimes/Always) Changes

(Sometimes/Always) Side-effects

"List the functions that
function F00 always calls."

'list the variables always
accessed by function FOO."
"Find the variables sometimes
changed by function FOO, and
call it FOOL 1ST."

11
D
n

D
0

C) What forms of documentation would be especially helpful?

Main-routine
Data-structure
Input
Output
Side-effect
Precondition
Assumptions
Intentional-annotation

Hook

Inactive-code

• Collects segments of code that
implement some particular purpose.

= A comment describing why some code,
not presently used, was designed in
to facilitate some future expansion.

- A history of revisions.

•^Mtf^.— .. _— .. .^.^a - •..- / . t^± _-' ••• - ' - '

;run Che filter function associated with each candidate.
;if it succeeds, apply the transform to the bindings returned by the

I ' n

AD-A142 224 AN INFORMAL STUDY OF PROGRAM COMPREHENSION(U) ADVANCED 1L 3
INFORMATION AND DECISION SYSTEMS MOUNTAIN VIEW CA ^
E A DOMESHEK ET AL. MAR 84 AI/DS-TM-1014-3

UNCLASSIFIED AFOSR-TR-84-0309 F49620-81-C-0067 F/G 12/1 NL

'«»r

1.0 !f •- IM

I.I

I: m IIP
S |" 12.0

1.8

1.25 mi i.4 i i.6

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

r

-.e *r

UPPLEMENTARV

INFORMATION
u

••

C""&*z
\v 5SIFIED

SECURITY CLASSIFICATION OF THIS PAGE äM&äs&JL
REPORT DOCUMENTATION PAGE

1* REPORT SECURITY CLASSIFICA1 ION

"::?:. ASSIFTED
:UR|TY CLASSIFICATION AUTHORITY

2b OECLASSIF iCATION DOWNGRADING SCHEDULE

IB RESTRICTIVE MARKINGS

3 DiSTRIBUTlON/AVAILABlLITY OF REPORT

Approved for public release; distribution
unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER.S)

TM-1014-3

S MONITORING ORGANIZATION REPORT NUMBERISl

ÄFOSR-TR. 8 4-0309
6* NAME OF PERFORMING ORGANIZATION

Advanced Information and
Decision Systems

So OFFICE SYMBOL
ilf applicable l

7a NAME OF MONITORING ORGANIZATION

Air Force Office of Scientific Research

6c ADDRESS lCil>. Slalr and /.IP Code!

201 San Antonio Circle, Suite 286
Mountain View CA 94040-1270

7o ADDRESS iCify. Sluie and ZIP Code)

Directorate of Mathematical & Inf<
Sciences, Boiling AFB DC 20332

rmation

a. NAME OF FUNDING.SPONSORING
ORGANIZATION

AF0SR

Bb. OFFICE SYMBOL
(If applicablei

NM

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F49620-81-C-0067
Be ADDRESS iC/f>. Stale and /.IP Code)

Boiling APE DC 20332

10 SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

61102:'
11 TITLE Inciuac Security Cltuttficationi

AN INFORMAL STUDY OF PROGRAM COMPREHENSION,
12. PERSONAL AUTHORlS)

R'-ian P. McCune

PROJECT
NO.

2304

TASK
NO

A7

WORK UNIT
NO

'PE OF REPORT

ITtffa+^m E i'M 1 —
16 SUPPLEMENT"»«* »*O-TATf0N

13b. TIME COVERED

FROM 1/6/82 TQ31/5/83
14 DATE OF REPORT il- .Ho. Day I

MAR 1984
IS PAGE COUNT

58

COSATl CODES

FIELD GHQU PI

1 6 SUBJECT Tt^ MS 'Con (in UP on rrvrw i' nfrr«on and ta< ntif\ fc> block number»

19 ABSTRACT Cunitnuf on reverse %f flff if MDH and ia*-ntif\ b\ bioc*t nwnben

During this period, the four investigators produced 11 papers with titles including,
"The intelligent program editor A knowledge based By•ten for supporting program and
documentation maintenance," "The multipurpose presentation system," "Rule based information
retrieval," "Incremental informal program acquisition," and "Results in knowledge based
program synthesis."

20 DISTRIBUTION/AVAILABILITY Of ABSTRACT

"•'CLASSlFlED/UNLIMITED E SAME AS RPT U OTIC USERS D

MME OF RESPONSIBLE INDIVIDUAL

.1'. Robert N. Buchal

• ABSTRACT SECURITY CLASSIFICATION

... L/.SS1FIED

??lj K IEPHONE NUMBE«
llm.uili A TO Co^fXr.~

(MM ^JjJ
(I . -^7-

11c OFFICE SYMBOL

m
DD FORM 1473. 83 APR EDTIONOF 1 JANTJIiOl.iiiLlH -.uiL^ASSincp

StCUR'T» CLASSIFICATION .,r

n~»»i ;!h-»Mtj4

AD-A142 224

UNCLASSIFIED

AN INFORMAL STUDV OF PROGRAM COMPREHENSION(U) ADVANCED
INFORMATION AND DECISION SVSTEMS MOUNTAIN VIEW CA
E A DOHESHEK ET AL. MAR 84 AI/DS-TM-1814-3
AF0SR-TR-84-8389 F49628-81-C-886? F/G 12/1

i ••.« - •. •. •. •. i . • •'. i» « . •. i .»":»; « . • • »,•'.•" »•""• •^T^?*^P^»|^'T*^T'»^»

1.0 E

I.I

1.25

m
U.

|28

132

lift

140

2.5

2.0

J4
1.6

a

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

'

v-v-v--

••

I '•.-"•.•.•

•

*

K •'. -. •

INFORMATION
r. ••. •

>:•-:•

K

C-V

k» •*•*••-.*.--*-.•_.•_*_.-_w..:_..--.••.'..•• .--^.••• .-• -• •• -• .- •-• -- - •• -• - -• - . •»• •-:
•".••.••. •• ••. ••. ••. •. -•.••. .•.•-... •• • .-. .•. .v,-..-. .•..

, -^^ • ^* - -**• fc *^.*l .

U IN. I . J I J l.l .-_
--*- in « 1*1 MJ*^* "—"

• i • • i . • .« • •:» . '
^,, -,-L„..-..- -•-:->-.- . •.».»K.l«di; *-'l*ni-'"-Ji•j£-'r--i" IJMJB^J

tICllKlTV CLASSIFICATION 0> 7 MIS PAGE

I

I *

I

REPORT DO OCUMENTATION I'AGE
J&HAJL^.

»t»0"l SECUHITV CLAWIHCA1ION

UNCLASSIFIED
7« SECU«lTvqt.AS5'llCAT I ON AUTHORITY

3t) DE CLASSlF iCATION'GCWNGnAOlNG SCHIDULI

4 PEnrcKwiNC cRoi'ü^ATiON REPOM T NUMHI RISI

TM-1014-3

UJ NAME OF PERFORMING ORGANIZATION

Advanced Information &
Decision Systems

b or (ict S'MhUL
H7.I<>/MV.IMV'

6c ADDRESS ll'ft) Mole >nil Alt uJil

201 San Antonio Circle, Suite 286
Mountain View, CA 94040

i. NAME Of FUNDING.SIONÜOHING

us°AT,ANA^sTdON

Air Force Office of Scientific

Uli Off ICE S> MHO I

FQ8671

8c ADORESS iCih. Stale <uij /.If ofn?£arcl1

Building 410
Boiling AFB, D.C. 20332

11 TITLE >lnciuat jrrsnf) Clom/icotiont

An Informal Study of Program Comprehension

In lit :, 1 Mil NVL MAHKINtj'j

> i •, I MM I. i I HIM, A VAU AHH. I TV Of III r',R r

Approved for public release;
distribution unlimited

'j MuMl I «Jlllfil, OIKiANIiATIO'l l*l f 0"T Nu'.'Bt «ISl

/föSR-TR- 84-0309
7.1 NAMI ill MONI1 (HUNG OMC.ANI£A IlOri

?l A(>[IMI •: i il II> .lull ül.l ///' f.»id I

^Sn it, ttA flFB i^-c =a*s
>) rn i ii. 11 n i MINI IMS onuiriNT IDCM irttj^ioN NUMBER •J rni.|.lllll MINI IN'./lljflM IOENTI

F49260-81-C-Ü V,
11) '.(IUIK I i)t hUMOiNG NOS

("<' " »H.*M PROJECT
i i f. VT ' i I r 11) NO

T AC»;
NO

^/

ACRK UNIT
NO

13 PERSONAL AUTMOI'ISI

Domeshek, Eric A.; Shapiro, Daniel G.; Dean, Jeffrey S.; McCune, Brian P.
13« TVPE Of REPORT 13a T

PPLE ME NT AR Y NOT A 1 I cM

13b TIME COVERED

FROM L_JAjne 82 TO 31 May 8ft

^V*Ka/

1.1 n,i '• il Hll'ijUi ilr..Ma Urn; i

March 1984
16 PAGE COUNT

62

COSATl CODES

» if LO GROUP

18 SUUJtCT TERMS H'unl.i i' ni-ii ini'i anii iiii,n(if> b> b/.'n *> number/

Program Reference Language (PRL), Extended Program Model
(EPM), Intelligent Program Editor (IPE), program
documentation, artificial intelligence (AI), knowledge base,

19 ABST R A CT iCunlinur on rftfrir ,f nrrriiuo and n/rn tif\ bi bl<>< * 'ti, .»ibi'r i

This report describes work performed during the second year of research on a Program
Reference Language. During this year, a study was conducted in which protocols of
programmers studying a new program (with the intent of debugging it) were analyzed, both

'ja for the vocabulary used and for indications of strategies adopted in their efforts at
I program comprehension. A sampling of programmers' natural vocabulary for referencing
.1 programs was gathered and analyzed. Preliminary steps were taken towards using this data
• as the basis for the design of a formal query language for the PRL. The study also raised
some new issues bearing on the implementation of systems which use the PRL: individual

(differences imply the need for customization; context-sensitive information management
is important; and useful user interface features were identified.

30 DISTRIBUTION-AVAIL ABILITY OF ABSTRACT

fuNCLASSlf lEO/UNLIMI'l O JC SAME AS RPT [J Ot IC UH «5 i.J

f
1, NAME OF RfSPONf.iULE INDIVIDUAL

Dr. Robert N. Buchal

.M Al'', Hi.'. I 'il :tllM1 T Cl ASSlF ICA t "?N

UNCLASSIFIED

: t i i i • i • • •; i

(?02) 767-4939

WOOL

i 0 FORM 1473.83 APR EDITION OF I JA.'I 7J 'S Oli'ili I II

•'••V- '•/-."•• . 'W v v.v. ••-••-••-/^Xy: •:••••>•-:<•-•• '••••• •-/ •• v-v ••;-••••. .\ *

f CUtllf Y LI AS/j 111 CATION CF TMlSPAGE

1^-v.c.- ..." Jk •.-^--•-•-•'-" ----------- "• • * ••" ^^"^^» •.••..! - - '. VV \±J±

END fc

t

FILMED i—-

m

3-85
•. -. v -v

'$-

DTIC
<-•.-.."•

r.v.j

% .*• „*• .*• „"• .*• *• ,*•","• ,"• *•" *" *«1 "•" "-' "•" "•* *•"*•**.' *-" *." "•* "«""«" **" "•"» ' " **.'"•* '•* - '» *-".*. *•" ' 1""- -"«l-''.""-."'-."\,"-/'-.'"-.'"'.""ö",s'"vv'-.""

